Scientists have found the single chemical which is key to controlling when hair follicle cells divide and when they die - a discovery that could not only treat baldness, but ultimately speed wound healing. University of California, Riverside, researchers studied hair follicles as they are the only part of humans that regenerates automatically and periodically, even without injury.
The researchers determined how a type of protein, TGF-beta, controls the process by which cells in hair follicles, including stem cells, divide and form new cells, or orchestrate their own death — eventually leading to the death of the whole hair follicle.
UC Riverside mathematical biologist and study co-author Qixuan Wang said: "Our new research gets us closer to understanding stem cell behavior, so that we can control it and promote wound healing." The research is detailed in a recent Biophysical Journal article.
“TGF-beta has two opposite roles. It helps activate some hair follicle cells to produce new life, and later, it helps orchestrate apoptosis, the process of cell death,” Wang said.
As with many chemicals, it is the amount that makes the difference. If the cell produces a certain quantity of TGF-beta, it activates cell division. Too much of it causes apoptosis.
No one is entirely sure why follicles kill themselves. Some hypotheses suggest it is an inherited trait from animals shedding fur to survive hot summer temperatures or trying to camouflage.
“Even when a hair follicle kills itself, it never kills its stem cell reservoir. When the surviving stem cells receive the signal to regenerate, they divide, make new cell and develop into a new follicle,” Wang said.
If scientists can determine more precisely the way TGF-beta activates cell division, and how the chemical communicates with other important genes, it might be possible to activate follicle stem cells and stimulate hair growth.
Because many animals, including humans, possess skin covered with hair, perfect wound healing would require regeneration of hair follicles. Being able to more precisely control levels of TGF-beta could also one day cure baldness.
“Potentially our work could offer something to help people suffering from a variety of problems,” Wang said.